

THE UNIVERSITY OF

global Feature EXtraction

Developing Slow Control and Monitoring Software for a Phase-I Trigger Upgrade of the ATLAS Experiment

Giordon Stark **DPF 2017** giordonstark.com

https://gfex.cern.ch

The ATLAS Detector

Calorimetry and Trigger

 2 main components to locate and absorb particles: Liquid Argon and Tile Hadronic Calorimeters

- The trigger system uses data from the calorimeters
- Bunches of protons collide every 25 ns (40 MHz rate)
 - Need to reduce this rate to
 - ~1 kHz for writing to disk
- Goal: retain efficiency of processes sought for in ATLAS
 - Need a lot of smart rejection
 - Need it fast and performant

The Motivation (I)

■ High p_T Lorentz-boosted top quarks, W/Z/h bosons, and exotics are critical elements of the ATLAS physics program

- As luminosity increases, the trigger thresholdsgo up
- Signal/Noise will increase with increased luminosity

Can we be smarter?

The Motivation (II)

- Current trigger uses a small window to quickly scan an event
 - If a jet with sufficient
 energy decays over too
 large of an area, trigger
 will not fire
- Can we increase the trigger region?

Yes, with gFEX

The Motivation (III)

Blue=Current Trigger @ 100 GeV

a top quark at 300 GeV

- Many analyses in ATLAS are sensitive to boosted objects with substructure
 - would like a trigger that does not cut them away
- gFEX maintains a flat trigger efficiency here

Red=gFEX Trigger @ 140 GeV

Current trigger is inefficient for jets with significant substructure

global Feature Extraction

LHC Run 3 — a new feature extraction module

Our Solution: increase the Rol and processing speed, but some loss in angular resolution

- algorithms run within 5 bunch crossings (125 ns), not including data input/output
- L1Topo/HLT get info about jets above a threshold and pileup calculation for other triggers
- **full calorimeter information on a single board** enables calculation of global event quantities

gFEX Prototype Board

What's inside?

Algorithms Run On FPGAs (x3)

Pile-up Energy Density (ρ) Calculations in the gFEX at the Level 1 Trigger

How does our simplified calculation of ρ match up to the corresponding offline calculation?

- Correlation between offline ρ and simplified online ρ using gFEX
- Online calculation independent of physics processes we're studying (it shouldn't and it doesn't).

What's inside?

Algorithms Run On FPGAs (x3)

UChicago: FPGA + Embedded Processor — Slow Control and Monitoring

Ironman - Software Package

- The slow control and monitoring infrastructure for the Embedded Processor will be in a python package called **ironman**.
 - https://github.com/kratsg/ironman
 - Documentation: https://iron-man.readthedocs.org/
- The goal:
 - Make it as easy as possible for someone to put their pieces in to the general framework while maintaing the overall procedure
 - custom communication protocols for reading/writing various hardware components
 - custom hardware maps specifying the layout of the entire board

Software Logic Overview

- Packet objects are passed between blocks of logic
- Parsing/building packets, reading hardware maps, managing the server (UDP, TCP, serial, etc...), handling event triggers — all are done for you

Server

- The simplest portion of the framework
 - event-driven
 - starts the callback chain
- UDP and TCP are supported

```
from ironman.server import ServerFactory
from ironman.packet import IPBusPacket
from twisted.internet import reactor
from twisted.internet.defer import Deferred
reactor.listenUDP(8888, ServerFactory('UDP',
  lambda: Deferred().addCallback(IPBusPacket)
              .addCallback(j)
              .addCallback(buildResponsePacket)
reactor.listenTCP(8888, ServerFactory('TCP',
  lambda: Deferred().addCallback(IPBusPacket)
              .addCallback(j)
              .addCallback(buildResponsePacket)
reactor.run()
```

Hardware Definitions

```
manager = HardwareManager()
manager.add(HardwareMap(file('xadc.xml').read(), 'xadc'))
```

- Given XML files defining the hardware for the board with address maps...
 - centralized all addresses into a single "map" (manager)
 that knows which map owns a specific address
 - like GPS navigation ask for an address and it tells you which route you need to take

Jarvis

- Think of Jarvis as your really scrappy OS
 - Manages all drivers (controllers) by associating them with routes
 - Each driver is responsible for implementing reads and writes for a given address

Temperature Monitoring

Time	From IP	From Port	To IP	To Port	Method	Error	ASCII
🖮 2:14:24.971 pm	192.168.0.15	8888	You	55056	UDP		\00\00\f0\00\00\01\0f123.
🍰 2:14:24.964 pm	You	55056	192.168.0.15	8888	UDP		\f0\00\00 \0f\01\00\00\02\00\00\00
🖮 2:14:06.498 pm	192.168.0.15	8888	You	55056	UDP		\00\00\f0\00\00\02\0f123.0407
🕯 2:14:06.490 pm	You	55056	192.168.0.15	8888	UDP		\f0\00\00 \0f\02\00\00\02\00\00\00
🖮 2:14:02.385 pm	192.168.0.15	8888	You	55056	UDP		\00\00\f0\00\00\02\0f2443\n
🕯 2:14:02.378 pm	You	55056	192.168.0.15	8888	UDP		\f0\00\00 \0f\02\00\00\01\00\00\00
🖮 2:13:55.705 pm	192.168.0.15	8888	You	55056	UDP		\00\00\f0\00\00\02\0f-2219\n
🕯 2:13:55.698 pm	You	55056	192.168.0.15	8888	UDP		\f0\00\00\0f\02\00\00\00\00\00\00

```
Writing ' \x00\x00\xf0\x00\x00\x02\x0f2440\n'
Writing ' \x00\x00\xf0\x00\x00\x02\x0f-2219\n'
Writing ' \x00\x00\xf0\x00\x00\x02\x0f2443\n'
Writing ' \x00\x00\xf0\x00\x00\x02\x0f123.0407'
Writing ' \x00\x00\xf0\x00\x00\x01\x0f123.'
```


Using bleeding-edge technology

Zynq® UltraScale+™ MPSoCs: EG Block Diagram

The Zyng UltraScale+ MPSoC

- 4-core ARM Cortex-A53 APU
- 2-core Cortex-R5 RPU
- ARM Mali-400 MP2 GPU

Want gFEX to be useful through to the next generation of physicists (~20 years)

Timeline

- Hardware and Firmware Review: Finished
- Completed design of gFEX v3 (PCB arrived recently)
 - v1: 1 Virtex 7 pFPGA
 - v2: two boards, one w/ 1 pFPGA and one w/ 3 pFPGas
- Production Readiness Review in Fall 2017
- Commission v3 gFEX Module starting early 2018

The Takeaway

- What are we doing?
 - Building a large-R jet trigger for Run 3 and beyond
- Why are we doing it?
 - Maintain trigger efficiency on interesting events as LHC moves towards higher and higher luminosity
- What makes gFEX special?
 - Full calorimeter on a single board with an embedded operating system for slow control and monitoring

Acronyms

- CTP Central Trigger Processor
- gFEX / jFEX / eFEX (global / jet / electron), Feature Extraction
 Module
- HW / SW / FW Hardware / Software / Firmware
- L1 Level 1
- L1Calo / L1Topo Level-1, (Calorimeter / Topological Processor)
- LAr Liquid Argon Calorimeter
- LHC Large Hadron Collider
- TileCal Tile Calorimeter

Backup

Object Definitions

Small-R Jets

- features: Anti-Kt R=0.4 built from calo clusters
- location: |eta| < 2.5 (post-selection)</p>

gTowers

- features: built from super cells formed from fully simulated L1Calo trigger information
- location: central, |eta| < 2.4 area: 0.2 (eta) x 0.2 (phi)</p>

gBlocks

- features: built from gTowers (one pistil at center and up to 8 stamens)
- location: central, built from central gTowers (excluding) those with 0.1x0.2 in area)
- **area**: multiple values ≤ 0.36, depends on where the pistil is located; nominally 0.6 (eta) x 0.6 (phi)

gBlock Cartoon

The HW Map

2.15 KB

41 lines (40 sloc)

```
@j.register('xadc')
class XADCController(ComplexIO):
    __base__ = "/sys/devices/soc0/amba@0/f8007100.ps7-xadc/iio
    __f__ = {
                     __base__+"in_temp0_offset",
                    __base__+"in_temp0_raw",
                    __base__+"in_temp0_scale",
                17: __base__+"in_voltage0_vccint_raw",
                18: __base__+"in_voltage0_vccint_scale",
                33: __base__+"in_voltage1_vccaux_raw",
                34: __base__+"in_voltage1_vccaux_scale",
                49: __base__+"in_voltage2_vccbram_raw",
                50: __base__+"in_voltage2_vccbram_scale",
                65: __base__+"in_voltage3_vccpint_raw",
                66: __base__+"in_voltage3_vccpint_scale",
                81: __base__+"in_voltage4_vccpaux_raw",
                82: __base__+"in_voltage4_vccpaux_scale",
                97: __base__+"in_voltage5_vccoddr_raw",
98: __base__+"in_voltage5_vccoddr_scale",
                113: __base__+"in_voltage6_vrefp_raw",
                114: __base__+"in_voltage6_vrefp_scale",
                129: __base__+"in_voltage7_vrefn_raw",
                130: __base__+"in_voltage7_vrefn_scale"
```

```
<?xml version="1.0" encoding="ISO-8859-1"?>
 1
     <node id="TOP">
          <node id="temperature" address="0x00000000"</pre>
              <node id="offset" address="0x0" descript</pre>
 4
              <node id="raw" address="0x1" description</pre>
 5
              <node id="scale" address="0x2" descripti</pre>
          </node>
          <node id="vccint" address="0x00000010" descr</pre>
 8
              <node id="raw" address="0x1" description</pre>
 9
              <node id="scale" address="0x2" descripti</pre>
10
11
          </node>
```

https://github.com/kratsg/ironman/blob/master/workbench/xadc.xml